The 2017 Hands in the Million Challenge on 3D Hand Pose Estimation
نویسندگان
چکیده
We present the 2017 Hands in the Million Challenge, a public competition designed for the evaluation of the task of 3D hand pose estimation. The goal of this challenge is to assess how far is the state of the art in terms of solving the problem of 3D hand pose estimation as well as detect major failure and strength modes of both systems and evaluation metrics that can help to identify future research directions. The challenge follows up the recent publication of BigHand2.2M [21] and First-Person Hand Action [2] datasets, which have been designed to exhaustively cover multiple hand, viewpoint, hand articulation, and occlusion. The challenge consists of a standardized dataset, an evaluation protocol for two different tasks, and a public competition. In this document we describe the different aspects of the challenge and, jointly with the results of the participants, it will be presented at the 3rd International Workshop on Observing and Understanding Hands in Action, HANDS 2017, with ICCV 2017.
منابع مشابه
3D Hand Pose Estimation: From Current Achievements to Future Goals
In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation from depth images? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate the top 10 state-ofthe-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during ...
متن کاملDepth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals
In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate 11 state-of-the-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during object interaction. We an...
متن کاملUsing a single RGB frame for real time 3D hand pose estimation in the wild
We present a method for the real-time estimation of the full 3D pose of one or more human hands using a single commodity RGB camera. Recent work in the area has displayed impressive progress using RGBD input. However, since the introduction of RGBD sensors, there has been little progress for the case of monocular color input. We capitalize on the latest advancements of deep learning, combining ...
متن کاملV2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map
Most of the existing deep learning-based methods for 3D hand and human pose estimation from a single depth map are based on a common framework that takes a 2D depth map and directly regresses the 3D coordinates of keypoints, such as hand or human body joints, via 2D convolutional neural networks (CNNs). The first weakness of this approach is the presence of perspective distortion in the 2D dept...
متن کاملFirst-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose Annotations
In this work we study the use of 3D hand poses to recognize first-person hand actions interacting with 3D objects. Towards this goal, we collected RGB-D video sequences of more than 100K frames of 45 daily hand action categories, involving 25 different objects in several hand grasp configurations1. To obtain high quality hand pose annotations from real sequences, we used our own mo-cap system t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.02237 شماره
صفحات -
تاریخ انتشار 2017